Let Δ = \(\begin{vmatrix} 1 & a & a^2 \\[0.3em] a^2& 1 & a \\[0.3em] a & a^2 &1 \end{vmatrix}\)
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying R1→ R1 + R2, we get

⇒ Δ = (a2 + a + 1) = \(\begin{vmatrix} 1 & 0 &0 \\[0.3em] a^2& 1-a^2 & a-a^2 \\[0.3em] a & a^2-a &1-a \end{vmatrix}\)
Expanding the determinant along R1, we have
Δ = (a2 + a + 1)(1)[(1 – a2)(1 – a) – (a2 – a)(a – a2)]
⇒ Δ = (a2 + a + 1)(1 – a – a2 + a3 – a3 + a4 + a2 – a3)
⇒ Δ = (a2 + a + 1)(1 – a – a3 + a4)
⇒ Δ = (a2 + a + 1)(a4 – a3 – a + 1)
⇒ Δ = (a2 + a + 1)[a3(a – 1) – (a – 1)]
⇒ Δ = (a2 + a + 1)(a – 1)(a3 – 1)
⇒ Δ = (a – 1)(a2 + a + 1)(a3 – 1)
⇒ Δ = (a3 – 1)(a3 – 1)
∴ Δ = (a3 – 1)2
Thus,
\(\begin{vmatrix} 1 & a & a^2 \\[0.3em] a^2& 1 & a \\[0.3em] a & a^2 &1 \end{vmatrix}\) = (a3 - 1)2