Let Δ = \(\begin{vmatrix} a+x & y & z \\[0.3em] x & a+y & z\\[0.3em] x & y & a+z \end{vmatrix}\)
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying C1→ C1 + C2, we get

Expanding the determinant along C1, we have
Δ = (a + x + y + z)(1)[(a)(a) – (0)(0)]
⇒ Δ = (a + x + y + z)(a)(a)
∴ Δ = a2(a + x + y + z)
Thus,
\(\begin{vmatrix} a+x & y & z \\[0.3em] x & a+y & z\\[0.3em] x & y & a+z \end{vmatrix}\)= a2(a + x + y + z)