Let Δ = \(\begin{vmatrix}
2y & y-z-x & 2y \\[0.3em]
2z & 2z & z-x-y \\[0.3em]
x-y-z &2x &2x
\end{vmatrix}\)
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying R1→ R1 + R2, we get

Expanding the determinant along R1, we have
Δ = (x + y + z)(1)[0 – (–(x + y + z)(x + y + z))]
⇒ Δ = (x + y + z)(x + y + z)(x + y + z)
∴ Δ = (x + y + z)3
Thus,
\(\begin{vmatrix}
2y & y-z-x & 2y \\[0.3em]
2z & 2z & z-x-y \\[0.3em]
x-y-z &2x &2x
\end{vmatrix}\) = (x + y +z)3