\(A=\begin{bmatrix}1&1&1\\1&2&-3\\2&-1&3\end{bmatrix}\)
A3 = A2.A
A2 =\(\begin{bmatrix}1&1&1\\1&2&-3\\2&-1&3\end{bmatrix}\)\(\begin{bmatrix}1&1&1\\1&2&-3\\2&-1&3\end{bmatrix}\)\(=\begin{bmatrix}1+1+2&1+2-1&1-3+3\\1+2-6&1+4+3&1-6-9\\2-1+6&2-2-3&2+3+9\end{bmatrix}\)\(=\begin{bmatrix}4&2&1\\-3&8&-14\\7&-3&14\end{bmatrix}\)

Thus, A3 – 6A2 + 5A + 11I
Now, (AAA) A–1. – 6(A.A) A–1 + 5.A A–1 + 11I.A–1 = 0
AA(A–1A) – 6A(A–1A) + 5(A–1A) = – 1(A–1I)
A2 – 6A + 5I = 11 A–1
