Let, f(x) = x3 + 3x2 + 3x + 1
(i) x + 1
Apply remainder theorem
⇒ x + 1 =0
⇒ x = - 1
Replace x by – 1 we get
⇒ x3 + 3x2 + 3x + 1
⇒ (-1)3 + 3(-1)2 + 3(-1) + 1
⇒ -1 + 3 - 3 + 1
⇒ 0
Hence, the required remainder is 0.
x - \(\frac{1}{2}\)
Apply remainder theorem
⇒ x – 1/2 =0
⇒ x = 1/2
Replace x by 1/2 we get
⇒ x3 + 3x2 + 3x + 1
⇒ (1/2)3 + 3(1/2)2 + 3(1/2) + 1
⇒ 1/8 + 3/4 + 3/2 + 1
Add the fraction taking LCM of denominator we get
⇒ (1 + 6 + 12 + 8)/8
⇒ 27/8
Hence, the required remainder is 27/8
(iii) x = x – 0
By remainder theorem required remainder is equal to f (0)
Now, f (x) = x3 + 3x2 + 3x + 1
f (0) = (0)3 + 3 (0)2 + 3 (0) + 1
= 0 + 0 + 0 + 1
= 1
Hence, the required remainder is 1.
(iv) x+π = x – (-π)
By remainder theorem required remainder is equal to f (-π)
Now, f (x) = x3 + 3x2 + 3x + 1
f (- π) = (- π)3 + 3 (- π)2 + 3 (- π) + 1
= - π3 + 3π2 - 3π + 1
Hence, required remainder is - π3 + 3π2 - 3π + 1.
(v) 5 + 2x = 2 [x – \((\frac{-5}{2})]\)
By remainder theorem required remainder is equal to f \((\frac{-5}{2})\)
Now, f (x) = x3 + 3x2 + 3x + 1

Hence, the required remainder is \(\frac{-27}{8}.\)