Correct option is C. 15 cm
Given, Ratio of areas of adjacent faces of cube = 2 : 3 : 4
Volume of block = 9000 cm3
= A1 : A2: A3 = 2 : 3 : 4
= bh : lb : lh = 2 : 3 : 4
= b: l = 2 : 3
=h : l = 2 : 4
= h : b = 3 : 4 and v = lbh
Assume that , l = 6x , b = 4x , h = 3x
= 6x \(\times\) 4x \(\times\) 3x = 9000
= x3 = \(\cfrac{9000}{72}\) = 125
= x = \(\sqrt[3]{125}\) = 5
So, smallest edge would be 3x = 3 × 5 = 15 cm