9, 7, 5, 3 …
A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0
a1 = 9, a2 = 7, a3 = 5, a4 = 3
Now,
a2 – a1 = 7 – 9 = -2
a3 – a2 = 5 – 7 = -2
a4 – a3 = 3 – 5 = -2
As,
a2 – a1 = a3 – a2 = a4 – a3
The given sequence is A.P Common difference,
d = a2 – a1 = - 2
To find the next three more terms of A.P, firstly find an
We know,
an = a + (n-1) d
Where a is first term or a1 and d is common difference
∴ an = 9 + (n-1) -2
⇒ an = 9 – 2n + 2
⇒ an = 11 – 2n
When n = 5 :
a5 = 11 – 2(5)
⇒ a5 = 11 – 10
⇒ a5 = 1
When n = 6 :
a6 = 11 – 2(6)
⇒ a6 = 11 – 12
⇒ a6 = -1
When n = 7 :
a7 = 11 – 2(7)
⇒ a7 = 11 – 14
⇒ a7 = -3
Hence,
A.P is 9, 7, 5, 3, 1, -1, -3,….