Given,
an = 2n2 + n + 1
We can find first three terms of this sequence by putting values of n from 1 to 3.
When n = 1 :
a1 = 2(1)2 + 1 + 1
⇒ a1 = 2(1) + 2
⇒ a1 = 2 + 2
⇒ a1 = 4
When n = 2 :
a2 = 2(2)2 + 2 + 1
⇒ a2 = 2(4) + 3
⇒ a2 = 8 + 3
⇒ a2 = 11
When n = 3 :
a3 = 2(3)2 + 3 + 1
⇒ a3 = 2(9) + 4
⇒ a3 = 18 + 4
⇒ a3 = 22
∴ First three terms of the sequence are 4, 11, 22.
A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0
a1 = 4, a2 = 11, a3 = 22
Now,
a2 – a1 = 11 – 4 = 7
a3 – a2 = 22 – 11 = 11
As a2 – a1 is not equal to a3 – a2
The given sequence is not an A.P.