Given:
Line a2x + ay + 1 = 0 is perpendicular to the line x – ay = 1
To prove:
The line a2x + ay + 1 = 0 is perpendicular to the line x – ay = 1 for all non-zero real values of a.
Concept Used:
Product of slope of perpendicular line is -1.
Explanation:
The given lines are
a2x + ay + 1 = 0 … (1)
x − ay = 1 … (2)
Let m1 and m2 be the slopes of the lines (1) and (2).
m1m2 = - \(\frac{a^2}{a}\times\frac{1}{a}\) = -1
Hence proved, line a2x + ay + 1 = 0 is perpendicular to the line x− ay = 1 for all non-zero real values of a.