Given: f(x) = \(\frac{1}{(2x+1)}\), where x ≠ \(\frac{-1}2\)
Need to prove: f{f(x)} = \(\frac{2x +1}{2x+3}\) When x ≠ \(\frac{-3}2\)
Now placing f(x) in place of x
⇒ f{f(x)} = \(\frac{1}{2f(x) + 1}\)
⇒ f{f(x)} = \(\frac{1}{2\frac{1}{2x+1 }+1}\)
⇒ f{f(x)} = \(\frac{1}{\frac{2+2x+1}{2x+1 }}\) = \(\frac{2x +1}{2x+3}\), Where x ≠ \(\frac{-3}2\)
[proved]