To evaluate \(\lim\limits_{\text x \to2}\left(\cfrac{3^{\text x}-3^{3-\text x}-12}{3^{3-\text x}-3^{\text x/2}}\right) \)
lim(x→0) (3x - 33 - x - 12)/(33 - x - 3x/2)
Formula used: L'Hospital's rule Let f(x) and g(x) be two functions which are differentiable on an open interval I except at a point a where


This represents an indeterminate form. Thus applying L'Hospital's rule, we get

Thus, the value of \(\lim\limits_{\text x \to2}\left(\cfrac{3^{\text x}-3^{3-\text x}-12}{3^{3-\text x}-3^{\text x/2}}\right) \) is \(\cfrac{28\,In\,3}{-26.5\,In\,3}\)