\(\underset{x\rightarrow c}{lim}\frac{f(x)-f(c)}{x-c}\) = f'(c)
\(\frac{\underset{x\rightarrow c}{lim}\,f(x)-f(c)}{\underset{x\rightarrow c}{lim}\,x-c}\) = f'(c)
\(\underset{x\rightarrow c}{lim}\,f(x)-f(c)\) = f'(c) . \(\underset{x\rightarrow c}{lim}\,(x-c)\)
\(\underset{x\rightarrow c}{lim}\,(f(x)-f(c))\) = f'(c) . (c - c)
\(\underset{x\rightarrow c}{lim}\,f(x)\) - \(\underset{x\rightarrow c}{lim}\,f(c)\) = f'(c).(0)
\(\underset{x\rightarrow c}{lim}\,f(x)-f(c)\) = 0
\(\underset{x\rightarrow c}{lim}\,f(x)\) = f(c)