We need to evaluate ∫ sin-1x dx
Let u = sin-1x, dv = dx
⇒ du = \(\frac{1}{\sqrt{1-x^2}}\)dx, v = x
∫ sin-1x dx = x sin-1x - ∫ \(\frac{x}{\sqrt{1-x^2}}\)dx + c ....(1)
where c is integration constant.
Consider ∫ \(\frac{x}{\sqrt{1-x^2}}\)dx
Let w = 1 - x2
⇒ dw = -2xdx
⇒ xdx = -dw/2
∫ \(\frac{x}{\sqrt{1-x^2}}\)dx = ∫ \(-\frac{dw}{2\sqrt w}\)
= -1/2 ∫ dw/√w
= -1/2 (2√w)
= -√w
substitute back w = 1 - x2 we get
∴ ∫ \(\frac{x}{\sqrt{1-x^2}}\)dx = \(-\sqrt{1-x^2}\)
Therefore (1) becomes
∫ sin-1x dx = x sin-1 x + \(\sqrt{1-x^2}\) + c