`r=(sumxy)/(sqrt(sumx^(2)xxsumy^(2))),x=(X-bar(X)),y=(Y-bar(Y))`
The table shows that , `sumxy=58,sumx^(2)=28,sumy^(2)=130`
Substituting the values, we get
`r=(58)/(sqrt(28xx130))=(58)/(sqrt(3,640))=(58)/(60.33)=+0.96`
Coefficient of Correlation (r)=+0.96.
It is a situation of high positive correlation.