For which of the following functions `f(0)`
exists such that `f(x)`
is continuous at
`f(x)=1/((log)_e|x|)`
b. `f(x)=1/((log)_"e"|x|)`
c. `f(x)=x s inpi/x`
d. `f(x)=1/(1+2^(cot x))`
A. `f(x)=(1)/(log_(e)|x|)`
B. `f(x)=cos((|sinx|)/(x))`
C. `f(x)=x sin (pi)/(x)`
D. `f(x)=(1)=(1)/(1+2^(cotx))`