Correct Answer - Option 1 : 1, 2, 3
Concept:
Gauss-Jordan Method:
- This method is used to simplify an augmented matrix to its reduced-row echelon form.
- The following are the steps that must be followed while using the Gauss-Jordan Elimination method -
- Write the system as an augmented matrix.
-
Look at the first entry in the first row. Make this entry into a 1 and all other entries in that column 0s. This is called pivoting the matrix about this element.
-
Once this is done, move down the diagonal to the second entry of the second row and pivot about this entry.
- Continue until the whole matrix is in row-reduced form.
- Solve for the values of variables.
Calculation:
Given,
2x1 + 4x2 - 6x3 = - 8 ---(1)
x1 + 3x2 + x3 = 10 ---(2)
2x1 - 4x2 - 2x3 = - 12 ---(3)
This system of equations can be written in the form of matrices as follows -
\(\left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)
⇒ [A][X]=[D] ---(4)
Here,
\([A] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\)
\([D] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)
\([X] = \left[ {\begin{array}{*{20}{c}} {x_1}\\ {x_2}\\ {x_3} \end{array}} \right]\)
Step 1: Writing Augment Matrix
\(\therefore[A~\vdots ~D] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)
Step 2: Applying elementary transformations or pivoting of the augment matrix
a) R1 → \(\frac{1}{2}\)R1
\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {10}\\ { - 12} \end{array}} \right]\)
b) R2 → R2 - R1; R3 → R3 - 2R1
\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ - 8}&{ 4} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { - 4} \end{array}} \right]\)
c) R3 → R3 + 8R2
\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ 0}&{ 36} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { 108} \end{array}} \right]\)
Step 3: Solving for variables -
Now, the reduced equations can be written as -
x1 + 2x2 - 3x3 = - 4 ---(5)
x2 + 4x3 = 14 ---(6)
36x3 = 108 ---(7)
Solving (5), (6), and (7)
x3 = 3
x2 = 2
x1 = 1