Correct Answer - Option 3 : 27
Formula used :
Amount = P(1 + r/100)t
CALCULATION :
Suppose the principal and the rate of interest per annum be denoted by p and r, respectively.
According to given condition –
⇒ A8 = 3 × A3
⇒ \({\text{P}}{\left( {1 + \frac{{\text{r}}}{{100}}} \right)^8} = 3{\text{P}} \times {\left( {1 + \frac{{\text{r}}}{{100}}} \right)^3}\)
⇒ \({\left( {1 + \frac{{\text{r}}}{{100}}} \right)^5} = 3\)
We need to find the value of \(\;\frac{{{A_{55}}}}{{{A_{40}}}}\) :
⇒ \(\frac{{{A_{55}}}}{{{A_{40}}}} = \frac{{p{{\left( {1 + \frac{r}{{100}}} \right)}^{55}}}}{{p{{\left( {1 + \frac{r}{{100}}} \right)}^{40}}}}\)
⇒ \(\frac{{{A_{55}}}}{{{A_{40}}}} = {\left( {1 + \frac{r}{{100}}} \right)^{15}}\)
⇒ \(\frac{{{A_{55}}}}{{{A_{40}}}} = {\left( {1 + \frac{r}{{100}}} \right)^{\left( {5 \times 3} \right)}}\)
⇒ \(\frac{{{A_{55}}}}{{{A_{40}}}} = {\left( 3 \right)^3}\)
⇒ \(\frac{{{A_{55}}}}{{{A_{40}}}} = 27\)
∴ The amount at the end of the 55
th years will be 27 times that at the end of the 40
th year.