Correct Answer - Option 1 : Volume
Concept:
Double integral:
Let f(x, y) be defined at each point in a region ‘R’. Let the region ‘R’ be divided into ‘n’ sub-regions each of area δA1, δA2, …….. δAn
Let (xi – yi) be an arbitrary point in a sub-region with area δAi
Then,
\(\begin{array}{*{20}{c}}
{lim}\\
{n \to \infty }
\end{array}\left[ {\mathop \sum \limits_{{\rm{i}} = 1}^{\rm{n}} {\rm{f}}\left( {{{\rm{x}}_{\rm{i}}},{{\rm{y}}_{\rm{i}}}} \right){\rm{\delta }}{{\rm{A}}_{\rm{i}}}} \right] = \int\!\!\!\int {\rm{f}}\left( {{\rm{x}},{\rm{\;y}}} \right){\rm{dxdy}}\)
Triple integral:
Let f(x, y, z) be a function defined over a 3-dimensional finite region V. Divide the region V into elementary volumes δV1, δV2, …….. δVn
Let (xr, yr, zr) be any point in the rth sub-division δVr
Then,
\(\begin{matrix}
lim \\
n\to \infty \\
\end{matrix}\left[ \underset{\text{r }\!\!~\!\!\text{ }=1}{\overset{\text{n}}{\mathop \sum }}\,\text{f}\left( {{\text{x}}_{\text{r}}},{{\text{y}}_{\text{r}}},\text{ }\!\!~\!\!\text{ }{{\text{z}}_{\text{r}}} \right)\text{ }\!\!\delta\!\!\text{ }{{\text{V}}_{\text{r}}} \right]=\iiint{\text{f}\left( \text{x},\text{ }\!\!~\!\!\text{ y},\text{ }\!\!~\!\!\text{ z} \right)\text{dV}}\)
Hence the double integrals are used for computing area and triple integrals are used for computing volume.