Correct Answer - Option 3 : Q(4)
Concept:
FSK Modulation:
In FSK: transmission of 1 is represented as:
s1(t) = Ac cos 2π fHt
Transmission of 0 is represented as:
s2(t) = Ac cos 2π fLt
and the Bit error probability \(= Q\left[ {\sqrt {\frac{{{E_d}}}{{2{N_0}}}} } \right]\)
Where Ed is the energy of s1(t) – s2(t)
\({E_d} = \mathop \smallint \limits_0^{{T_b}} \{ {s_1}\left( t \right) - {s_2}\left( t \right)\}^2\;dt\;\)
\({E_d} = \mathop \smallint \limits_0^{{T_b}} s_1^2\left( t \right)dt + \mathop \smallint \limits_0^{{T_b}} s_2^2\left( t \right)dt - 2\mathop \smallint \limits_0^{{T_b}} {s_1}\left( t \right) - {s_2}\left( t \right)dt\)
Since s1(t) & s2(t) are orthogonal, we cn write:
\(\therefore \;\mathop \smallint \limits_0^{{T_b}} {s_1}\left( t \right) - {s_2}\left( t \right)dt = 0\)
\({E_d} = \mathop \smallint \limits_0^{{T_b}} s_1^2\left( t \right)dt + \mathop \smallint \limits_0^{{T_b}} s_2^2\left( t \right)dt\)
\({E_d} = \frac{{A_c^2{T_b}}}{2} + \frac{{A_c^2{T_b}}}{2} = A_c^3{T_b}\)
\(BER = Q\left( {\sqrt {\frac{{A_c^2{T_b}}}{{2{N_0}}}} } \right)\)
Analysis:
Given:
Ac = α = 4 mV
\(\frac{{{N_0}}}{2} = 0.5 \times {10^{ - 12}}\;w/Hz\)
N0 = 10-12 w/Hz
\({T_b} = \frac{1}{{{R_b}}} = \frac{1}{{800 \times {{10}^3}}}\)
Tb = 0.2 × 10-5
Tb = 2 × 10-6 sec.
\(BER = Q\left( {\sqrt {\frac{{A_c^2{T_b}}}{{2{N_0}}}} } \right)\)
\(BER = Q\left( {\sqrt {\frac{{{{\left( {4 \times {{10}^{ - 3}}} \right)}^2} \times 2 \times {{10}^{ - 6}}}}{{2 \times {{10}^{ - 12}}}}} } \right)\)
\(BER = Q\left( {\sqrt {\frac{{16 \times {{10}^{ - 6}} \times 2 \times {{10}^{ - 6}}}}{{2 \times {{10}^{ - 12}}}}} } \right)\)
\(BER = Q\left( {\sqrt {16} } \right)\)
BER = Q(4)