Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
447 views
in Statistics by (95.4k points)
closed by
The mean deviation about mean μ of a normal distribution is nearly
1. \(\frac{3}{5}\sigma\)
2. \(\frac{5}{3}\sigma\)
3. \(\frac{4}{5}\sigma\)
4. \(\frac{5}{4}\sigma\)

1 Answer

0 votes
by (95.2k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(\frac{4}{5}\sigma\)

Normal distribution:

The probability density function of a normal distribution is given by

\(f\left( x \right) = \frac{1}{{\sigma \sqrt {2\pi } }}{e^{ - \frac{{{{\left( {x - \mu } \right)}^2}}}{{2{\sigma ^2}}}}}\)

Where σ is standard deviation

μ is the mean

Mean (a) expression of is define as

\(E\left( x \right) = \;\mathop \smallint \limits_{ - \infty }^\infty x\;f\left( x \right)\;dx\)

Calculation:

Mean deviation about mean μ is,

\(E\left( {\left| {x - \mu } \right|} \right) = \mathop \smallint \limits_{ - \infty }^\infty \left| {x - \mu } \right|f\left( x \right)\;dx\)

\(= \mathop \smallint \limits_{ - \infty }^\infty \left| {x - \mu } \right|\frac{1}{{\sigma \sqrt {2\pi } }}\;{e^{ - \frac{{{{\left( {x - \mu } \right)}^2}}}{{2{\sigma ^2}}}}}\)

\(= \frac{1}{{\sigma \sqrt {2\pi } }}\;\mathop \smallint \limits_{ - \infty }^\infty \left| {x - \mu } \right|{e^{ - \frac{{{{\left( {x - \mu } \right)}^2}}}{{2{\sigma ^2}}}}}dx\)

Let \(\frac{{x - \mu }}{\sigma } = t\)

x – μ = σt

⇒ dx = σ dt

Now, \(E\left( {\left| {x - \mu } \right|} \right) = \frac{1}{{\sigma \sqrt {2\pi } }}\;\mathop \smallint \limits_{ - \infty }^\infty \sigma \left| t \right|{e^{ - \frac{{{t^2}}}{2}}}\sigma \;dt\) 

\(= \frac{\sigma }{{\sqrt {2\pi } }}\;\mathop \smallint \limits_{ - \infty }^\infty \left| t \right|{e^{ - \frac{{{t^2}}}{2}}}dt\)

\(= \frac{{2\sigma }}{{\sqrt {2\pi } }}\;\mathop \smallint \limits_0^\infty t\;{e^{ - \frac{{{t^2}}}{2}}}dt\)

Let \(\frac{{{t^2}}}{2} = z\)

2t dt = 2 dz t dt = dz

\(= \frac{{\sqrt 2 \;\sigma }}{{\sqrt \pi }}\;\mathop \smallint \limits_0^\infty {e^{ - z}}\;dz = \sqrt {\frac{2}{\pi }} \sigma \left[ { - {e^{ - z}}} \right]_0^\infty \)

\(= \sqrt {\frac{2}{\pi }} \sigma = 0.8\;\sigma = \frac{4}{5}\sigma\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...