Correct Answer - Option 1 : μ - 1
\(p\left( x \right) = \frac{A}{{{x^\mu }}},1 \le x < \infty\)
= 0, - ∞ < x < 1
p(x) to be a probability density function
\(\Rightarrow \mathop \smallint \limits_{ - \infty }^\infty p\left( x \right)dx = 1\)
\(\Rightarrow \mathop \smallint \limits_1^\infty \frac{A}{{{x^\mu }}}dx = 1\)
\(\Rightarrow \left[ {A\frac{{{x^{ - \mu + 1}}}}{{ - \mu + 1}}} \right]_1^\infty = 1\)
\(\Rightarrow \frac{A}{{1 - \mu }}\left[ {{{\left( \infty \right)}^{1 - \mu }} - {{\left( 1 \right)}^{ - \mu + 1}}} \right] = 1\)
\(\Rightarrow \frac{A}{{1 - \mu }}\left[ {0 - 1} \right] = 1\)
⇒ A = μ – 1