Correct Answer - Option 1 : 0.27
Concept:
Poisson Distribution
The Poisson distribution can be used to model the vehicle arrival
\({\rm{P}}\left( {{\rm{n}},{\rm{t}}} \right) = \frac{{{{\rm{e}}^{ - {\rm{λ t}}}}{{\left( {{\rm{λ t}}} \right)}^{\rm{n}}}}}{{{\rm{n}}!}}\)
Where,
λ = Number of vehicles per second
t = Time interval
n = Number of vehicles
Calculation:
Given,
λ = 240 veh/hr = 240/3600 veh/sec = 0.0666 veh/sec
n = 1, t = 30sec
\({\rm{P}}\left( {{\rm{n}},{\rm{t}}} \right) = \frac{{{{\rm{e}}^{ - {\rm{λ t}}}}{{\left( {{\rm{λ t}}} \right)}^{\rm{n}}}}}{{{\rm{n}}!}}\)
\({\rm{P}}\left( {{\rm{1}},{\rm{30}}} \right) = \frac{{{{\rm{e}}^{ - {\rm{0.0666× 30}}}}{{\left( {{\rm{0.0666× 30}}} \right)}^{\rm{1}}}}}{{{\rm{1}}!}}\)
P (1, 30) = e-2 × 2 = 0.27