Correct Answer - Option 3 :
\(\frac{{{e^{ - s\tau }}}}{s}\)
\(\begin{array}{l}
u\left( t \right) \leftrightarrow \frac{1}{s}\\
f\left( t \right) = u\left( {t - \tau } \right)
\end{array}\)
\(\begin{array}{l}
L\left[ {f\left( t \right)} \right] = L\left[ {u\left( {t - \tau } \right)} \right]\\
= {e^{ - s\tau \;}}L\left[ {u\left( t \right)} \right] = \frac{{{e^{ - s\tau }}}}{s}
\end{array}\)