Correct Answer - Option 3 :
\(\frac{217}{64}\)
Given:
x – y = \(\frac{7}{4}\)
\(\frac{1}{x}-\frac{1}{y}=\frac{14}{3}\)
Formula used:
x3 – y3 = (x – y)[(x – y)2 + 3xy]
Calculation:
According to the question
\(\frac{1}{x}-\frac{1}{y}=\frac{14}{3}\)
⇒ -(x – y)/xy = 14/3
Putting the value of x – y in the given equation
⇒ -(7/4)/xy = 14/3
⇒ -1/xy = 14/3 × 4/7
⇒ -1/xy = 8/3
⇒ xy = -3/8
Now,
x3 – y3 = (x – y)[(x – y)2 + 3xy]
⇒ x3 – y3 = (7/4) × (49/16) – (9/8)
⇒ x3 – y3 = 7/4 × (49 – 18)/16
⇒ x3 – y3 = (7/4 × 31/16)
⇒ x3 – y3 = 217/64
∴ The required value is 217/64