Correct Answer - Option 4 : None of these
Given:
\(x = \frac{{√ 3 + 1}}{{√ 3 - 1}}\)
\(y = \frac{{√ 3 - 1}}{{√ 3 + 1}}\)
Formula used:
(a + b)2 = a2 + b2 + 2ab
(a - b)2 = a2 + b2 - 2ab
(a + b)(a - b) = a2 - b2
(a + b)2 + (a - b)2 = 4ab
Calculations:
Rationalize the value of x = \(x = \frac{{√ 3 + 1}}{{√ 3 - 1}} × \frac{{√ 3 + 1}}{{√ 3 + 1}}\)
⇒ (3 + 1 + 2√3)/(3 - 1)
⇒ (4 + 2√3)/2
⇒ 2 + √3
Rationalize the value of \(y = \frac{{√ 3 - 1}}{{√ 3 + 1}} × \frac{{√ 3 - 1}}{{√ 3 - 1}}\)
⇒ (3 + 1 - 2√3)/(3 - 1)
⇒ (4 - 2√3)/2
⇒ 2 - √3
(x3 + y3) = (x + y)(x2 + y2 - xy)
⇒ [(2 + √3) + (2 - √3)][(2 + √3)2 + ( 2 - √3)2 - (2 - √3 )(2 + √3 )]
⇒ [2 + √3 + 2 - √3][4 + 3 + 4√3 + 4 + 3 - 4√3 - 4 + 3]
⇒ 4 × (13)
⇒ 52