Correct Answer - Option 1 :
\(\frac{\sqrt{26}}{13}\)
Given:
sinθ = 11/15
Formula used:
b2 = √h2 – p2
sinθ = p/h
secθ = h/b
tanθ = p/b
Calculation:
We know that,
sinθ = p/h = 11/15
b2 = √h2 – p2
⇒ b2 = √(15)2 – (11)2
⇒ b2 = √225 – 121
⇒ b2 = √104
⇒ b = 2√26
secθ = h/b = 15/2√26
tanθ = p/b = 11/2√26
(sec θ – tan θ) = (15/2√26 – 11/2√26)
⇒ 4/2√26
⇒ 2/√26
Multiplying by √26 both sides we get,
⇒ (2/√26 × √26/√26)
⇒ (2√26)/26
⇒ √26/13
∴ Required value is \(\frac{\sqrt{26}}{13}\)