Correct Answer - Option 4 : sec
2 θ
Given:
\(\frac{(1+\cos θ)(cosec θ-\cot θ)\sec θ}{\sin θ(1-\sinθ)(\sec θ+\tan θ)}=?\)
Formula used:
cosecθ = 1/sinθ
secθ = 1/cosθ
cotθ = cosθ/sinθ
tanθ = sinθ/cosθ
1 – cos2θ = sin2θ
1 – sin2θ = cos2θ
Calculation:
\(\frac{(1+\cos θ)(cosec θ-\cot θ)\sec θ}{\sin θ(1-\sinθ)(\sec θ+\tan θ)}=?\)
⇒ [(1 + cosθ)(1/sinθ – cosθ/sinθ) 1/cosθ]/[sinθ(1 – sinθ)(1/cosθ + sinθ/cosθ)]
⇒ [(1 + cosθ)(1 – cosθ/sinθ) 1/cosθ]/[sinθ(1 – sinθ)(1 + sinθ/cosθ)]
⇒ [(1 – cos2θ)/sinθ × 1/cosθ]/[sinθ (1 – sin2θ)/cosθ]
⇒ (sin2θ/sinθ × 1/cosθ)/(sinθ × cos2θ/cosθ)
⇒ (sinθ/cosθ)/(sinθ × cosθ)
⇒ 1/cos2θ
⇒ sec2θ
∴ The value of ? is sec2θ