Correct Answer - Option 2 :
\(\frac{{{\rm{V^2}}}}{{2{\rm{g(G +f_r) }}}} \)
Explanation:
Braking distance at downgrade,
\({\left( {{S_b}} \right)_{downgrade}} = \frac{{{V^2}}}{{254\left( {f - G} \right)}}\)
Where V = Design speed in kmph
f = Co-efficient of longitudinal friction, G = Grade
or
\({\left( {{S_b}} \right)_{downgrade}} = \frac{{{V^2}}}{{2g\left( {f - G} \right)}}\) v in (m/s)
Braking distance at upgrade,
\({\left( {{S_b}} \right)_{upgrade}} = \frac{{{V^2}}}{{254\left( {f + N} \right)}}\)
or
\({\left( {{S_b}} \right)_{upgrade}} = \frac{{{V^2}}}{{2g\left( {f + G} \right)}}\) v in (m/s)