Correct Answer - Option 2 :
x2 - 28x + 195 = 0
I. x2 - 31x + 240 = 0
⇒ x2 - 16x - 15x + 240 = 0
⇒ x(x - 16) - 15(x - 16) = 0
⇒ (x - 16) (x - 15) = 0
⇒ x = 15 , 16
So, According to the condition x1 = 16 & x2 = 15
II. 3y2 – 7y – 3 = 8y - 3y2- 9
⇒ 6y2 – 15y + 6 = 0
⇒ 6y2 – 12y – 3y + 6 = 0
⇒ 6y(y – 2) – 3(y - 2) = 0
⇒ (y – 2)(6y – 3) = 0
⇒ y = 2 or y = 1/2
So, According to the condition y1 = 1/2 & y2 = 2
(– 2y1 + x1) = (– 1 + 16) = 15
- (y2 – x2) = - (2 - 15) = 13
So, the equation whose roots are 13 & 15 is k(x - 15)(x - 13), (where k can be any number)
Equation is: x2 - 28x + 195 = 0