Correct Answer - Option 1 : 0.6434
Concept:
General Formula for multiple correlation coefficient
\(\rm R^2_1{.}{_2}{_3} = \frac{r_{12}^{2}+r_{13}^{2}-2r_{12}r_{13}r_{23}}{1-r_{23}^{2}}\)
Given
r12 = +0.80, r13 = -0.40 and r23 = -0.56
Calculation
\(\rm R_{1.23}^{2} = \frac{r_{12}^{2}+r_{13}^{2}-2r_{12}r_{13}r_{23}}{1-r_{23}^{2}}\)
\(\rm R^2_1{.}{_2}{_3}= \frac{0.80^{2}+(-0.40)^{2}-2(0.80)(-0.40)(-0.56)}{1-(-0.56)^{2}}\)
\(\rm R^2_1{.}{_2}{_3}\)= 0.64 0.16 - 2 × 0.8 × (- 0.40)(-0.56)/[1 - (0.56)2]/[1 - (0.56)2
⇒ (0.80 - 0.3584)/(1 - 0.3136)
∴ \(\rm R^2_1{.}{_2}{_3}\) = 0.6434