Correct Answer - Option 3 : 1
Given:
(1 + √2)x2 – (√5 + √10)x + (1 + √2)
Roots of equation: p and q
Concept Used:
If a quadratic equation (ax2 + bx + c=0)
Then, p + q = - b/a and pq = c/a
Calculation:
(1 + √2)x2 – (√5 + √10)x + (1 + √2)
p + q = - (- √5 - √10)/(1 + √2) = √5 [ 1 + √2]/(1 + √2) = √5
pq = (1+ √2)/(1 + √2)= 1
So, (p + q) = √5 and pq = 1
Now, (p – q) = √[(p + q)2 – 4pq]
⇒ √[(√5)2 – 4(1)]
⇒ √(5 – 4)
⇒ 1