Correct Answer - Option 4 : 0
Given:
(a/b) + (b/a) = 1
Formula used:
(a + b)2 = a2 + b2 + 2ab
a3 + b3 = (a + b)(a2 + b2 – ab)
Calculation:
(a/b) + (b/a) = 1
⇒ (a2 + b2)/(ab) = 1
⇒ (a2 + b2) = ab ----(i)
a3 + b3 = (a + b)(a2 + b2 – ab)
Putting the value of (a2 + b2) from equation (i),
⇒ a3 + b3 = (a + b)(ab – ab)
⇒ 0
∴ The value of a3 + b3 is 0.