Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
390 views
in Calculus by (239k points)
closed by
Differentiate x-ln x with respect to \(\rm e^{x^{2}}\)
1. \(\rm -x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)
2. \(\rm -x^{-\ln x}(\ln x)\over xe^{x^{2}}\)
3. \(\rm -2x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)
4. \(\rm -2x^{-\ln x}(\ln x)\over xe^{x^{2}}\)

1 Answer

0 votes
by (237k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\rm -x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)

Concept:

Parametric Form:

If f(x) and g(x) are the functions in x, then 

\(\rm df(x)\over dg(x)\) = \(\rm \frac{df(x)\over dx}{dg(x)\over dx}\) 

Calculation:

Let z = x-ln x 

Taking log both sides, we get

ln z = ln x-ln x

ln z = - (ln x)2                       (∵ ln mn = n ln m)

Differentiating with respect to x

\(\rm {1\over z}{dz\over dx}\) = -2 ln x\(\rm\left({1\over x}\right)\)

\(\rm {dz\over dx} = z\left[-2\ln x\over x\right]\)

\(\rm {dz\over dx} = x^{-\ln x}\left[-2\ln x\over x\right]\)

\(\rm {dz\over dx} = -2x^{-\ln x}\left[\ln x\over x\right]\)

Also y = \(\rm e^{x^{2}}\)

Taking log both sides, we get

ln y = ln \(\rm e^{x^{2}}\)        

ln y = x2 ln e               (∵ ln mn = n ln m)

ln y = x2                      (∵ ln e = 1)

Differentiating with respect to x

\(\rm {1\over y}{dy\over dx} = 2x\)

\(\rm {dy\over dx} = y[2x]\)

\(\rm {dy\over dx} = 2x e^{x^{2}}\)

The required result is

\(\rm dz\over dy\) = \(\rm {dz\over dx}\over{dy\over dx}\)

\(\rm -2x^{-\ln x}\left[\ln x\over x\right]\over2xe^{x^{2}}\)

\(\rm -x^{-\ln x}(\ln x)\over x^2e^{x^{2}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...