Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
108 views
in Algebra by (239k points)
closed by
What is the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) ?
1. \(\dfrac{\sqrt{165}}{2}\)
2. \(\dfrac{\sqrt{135}}{2}\)
3. 4
4. 2

1 Answer

0 votes
by (240k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\dfrac{\sqrt{165}}{2}\)

Concept:

Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

 

Calculations:

Given, triangle whose vertices are at A = (3, -1, 2) = \(\rm 3\vec i -\vec j + 2\vec k\)

B = (1, -1, -3) =  \(\rm \vec i -\vec j - 3\vec k\)

and C = (4, -3, 1) =  \(\rm 4\vec i -3\vec j + \vec k\)

Let A, B , and C be the vertices of the \(\triangle ABC\) , then the area of that triangle = \(\rm \dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

\(\rm \vec {AB} = \rm (\vec i -\vec j - 3\vec k) - (3\vec i -\vec j + 2\vec k)\)

\(\rm \vec {AB}= -2\vec i + 0\vec k -5 \vec k\)

 

\(\rm \vec {AC} = \rm (4\vec i -3\vec j + \vec k) - (3\vec i -\vec j + 2\vec k)\)

⇒ \(\rm \vec {AC} = \vec i -2\vec j -\vec k\)

Now, \(\rm \vec {AB}\times\vec {AC}= \)\(\begin{vmatrix} \vec i&\vec j & \vec k \\ -2& 0 & -5 \\ 1 & -2 & -1 \end{vmatrix}\)

\(\rm \vec {AB} \times \vec {AC} = \vec i (-10)-\vec j(2+5)+\vec k(4-0)\)

\(\rm \vec {AB} \times \vec {AC} = -10\vec i -7\vec j+4\vec k\)

⇒ \(\rm |\vec {AB} \times \vec {AC}| = \sqrt {(-10)^2+(-7)^2+(4)^2 }\)

\(\rm |\vec {AB} \times \vec {AC}| = \sqrt {165}\)

The area of that triangle = \(\dfrac 1 2 \times |\vec {AB}\times \vec {AC}|\)

⇒ The area of that triangle = \(\dfrac 12 \times \sqrt {165}\)
Hence, the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) is \(\dfrac {\sqrt {165}}{2}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...