Correct Answer - Option 4 : 108√3 cm
2
Given:
The total surface area of the regular tetrahedron = 144√3 cm2
Formula Used:
The total surface area of the regular tetrahedron = √3 × a2
The lateral surface area of the regular tetrahedron = (3√3 × a2)/4
Where a is the side of the regular tetrahedron
Calculation:
The total surface area of the regular tetrahedron = 144√3 cm2
⇒ √3 × a2 = 144√3
⇒ a2 = 144
⇒ a = √144
⇒ a = 12 cm
The lateral surface area of the regular tetrahedron = (3√3 × a2)/4
⇒ 3√3 × (12)2/4
⇒ 3√3 × 144/4
⇒ 3√3 × 36
⇒ 108√3 cm2
∴ The lateral surface area of the regular tetrahedron is 108√3 cm2