Volume of a regular tetrahedron = \(\frac{\sqrt{2}}{12} (edge)^2\) = \(\frac{\sqrt{2}}{12}\times 16^2\)
= \(\frac{\sqrt{2}\times 256}{12} \) cm3 = \(\frac{64\sqrt{2}}{3} \) cm3
Lateral surface area = \(\frac{3\sqrt{3}}{4} (edge)^2 =\frac{3\sqrt{3}}{4} 16^2\)
= 192\(\sqrt{3}\) cm2
Total surface area =\({\sqrt{3}} (edge)^2 = {\sqrt{3}} \times 16^2\) cm2 = 256\(\sqrt{3}\) cm2