mN2 = 4 kg, mCO2 = 6 kg, pmix = 4 bar
T1 = 25 + 273 = 298 K, T2 = 50 + 273 = 323 K
cv(mix) = ?, cp(mix) = ?
Using the relation,

Change in internal energy, ∆U :
∆U = [mcv(T2 – T1)]mix
= (4 + 6) × 0.6898(323 – 298) = 172.45 kJ.
Change in enthalpy, ∆H :
∆H = [mcp(T2 – T1)]mix
= (4 + 6) × 0.9216(323 – 298) = 230.4 kJ.
Change in entropy, ∆S :

= 4 × 0.745 loge \(\cfrac{323}{298}\) + 6 × 0.653 loge \(\cfrac{323}{298}\)
= 0.5557 kJ/K.
Note. ∆S may also be found out as follows :
∆S = (mN2 + mCO) cv(mix) loge \(\cfrac{T_2}{T_1}\)
= (4 + 6) × 0.6898 loge \(\cfrac{323}{298}\) = 0.5557 kJ/K