Given 2P(X = x1) = 3P(X = x2) = P(X = x3) = 5P(X = x4) = k
\(\displaystyle\sum^4_{i=1} p(X = x_i) = 1\)
⇒ P(X = x1) + P(X = x2) + P(X = x3) + P(X = x4) =1
⇒ \(\frac k2 + \frac k3 + k+\frac k5 = 1\)
⇒ \(\frac{15k + 10 k+ 30k + 6k}{30} = 1\)
⇒ \(k = \frac{30}{61}\)
P(X = x1) = \(\frac{15}{61}\)
P(X = x2) = \(\frac{10}{61}\)
P(X = x3) = \(\frac{30}{61}\)
P(X = x4) = \(\frac{6}{61}\)