The correct option (d) [(sin2x)/2]
Explanation:
I = [(cos8x – sin8x)/(1 – 2sin2xcos2x)]dx ...(1)
consider cos8x – sin8x = (cos4x – sin4x) ∙ (cos4x + sin4x)
= (cos2x – sin2x)(cos2x + sin2x)(1 – 2sin2x ∙ cos2x)
= (cos2x – sin2x)(1 – 2sin2x ∙ cos2x)
∴ putting this value in (1),
I = ∫[{(cos2x – sin2x)(1 – 2sin2x ∙ cos2x)}/(1 – 2sin2x ∙ cos2x)] ∙ dx
= ∫(cos2x – sin2x)
= ∫cos2xdx
I = [(sin2x)/2] + c