Let a be first term and d be common difference of AP.
We have, mam = nan
⇒ m[a + (m – 1)d] = n[a + (n – 1 )d]
⇒ ma + m2d – md = na + n2d – nd
⇒ m2d – n2d – md + nd = na – ma
⇒ d(m2 – n2) – d(m – n) = a(n – m)
⇒ d[m2 – n2 – (m – n)] = a(n – m)
⇒ d[(m + n) (m – n) – (m – n)] = a(m – n)
⇒ d[(m – n) (m + n – 1)] = – a(m – n)
⇒ d(m + n – 1) = \(\frac{-a(m-n)}{(m-n)}\)
⇒ d(m + n – 1) = – a
⇒ d = \(-\frac{a}{m+n+1}\)
Now, a(m+n) = a + (m + n – 1)d
= a + {(m + n – 1) × \(\frac{-a}{(m+n-1)}\)}
= a – a = 0
Proved