We have,
a2 = 3 + 2n
a1 = 3+ 2 × 1 = 5
a2 = 3 + 2 × 2 = 7
a3 = 3 + 2 × 3 = 9 …… and so on.
List of numbers become 5, 7, 9, …
a2 – a1 = 7 – 5 = 2
a3 – a2 = 9 – 7 = 2
∵ a2 – a1 = a3 – a2
The sequence forms an AP.
Here, a = 5
d = a2 – a1 = 7 – 5 = 2
n = 24
We know that Sn = n/2[2a + (n – 1)d]
⇒ S24 = 24/2 [2 × 5 + (24 – 1) × 2]
⇒ S24= 12 [10 + 23 × 2]
⇒ S24 = 12 [10 + 46]
⇒ S24 = 12 × 56 = 672
Hence, the sum of first 24 terms of list of numbers = 672.