Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
15.3k views
in Mathematics by (50.3k points)
closed by

If the solution of the differential equation \((2 x+3 y-2) d x+(4 x+6 y-7) d y=0, y(0)=3\), is \(\alpha x+\beta y+3 \log _{e}|2 x+3 y-\gamma|=6\), then \(\alpha+2 \beta+3 \gamma\) is equal to ____.

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct answer: 29

\(2 \mathrm{x}+3 \mathrm{y}-2=\mathrm{t}\)

\(2+3 \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}\)

\(4 \mathrm{x}+6 \mathrm{y}-4=2 \mathrm{t}\)

\(4 \mathrm{x}+6 \mathrm{y}-7=2 \mathrm{t}-3\)

\(\frac{d y}{d x}=\frac{-(2 x+3 y-2)}{4 x+6 y-7}\)

\(\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{-3 \mathrm{t}+4 \mathrm{t}-6}{2 \mathrm{t}-3}=\frac{\mathrm{t}-6}{2 \mathrm{t}-3}\)

\(\int \frac{2 \mathrm{t}-3}{\mathrm{t}-6} \mathrm{dt}=\int \mathrm{dx}\)

\(\int\left(\frac{2 t-12}{t-6}+\frac{9}{t-6}\right) \cdot d t=x\)

\(2 \mathrm{t}+9 \ln (\mathrm{t}-6)=\mathrm{x}+\mathrm{c}\)

\(2(2 x+3 y-2)+9 \ln (2 x+3 y-8)=x+c\)

\(\mathrm{x}=0, \mathrm{y}=3\)

\(\mathrm{c}=14\)

\(4 \mathrm{x}+6 \mathrm{y}-4+9 \ln (2 \mathrm{x}+3 \mathrm{y}-8)=\mathrm{x}+14\)

\(\mathrm{x}+2 \mathrm{y}+3 \ln (2 \mathrm{x}+3 \mathrm{y}-8)=6\)

\(\alpha=1, \beta=2, \gamma=8\)

\(\alpha+2 \beta+3 \gamma=1+4+24=29\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...