Correct answer: 29
\(2 \mathrm{x}+3 \mathrm{y}-2=\mathrm{t}\)
\(2+3 \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}\)
\(4 \mathrm{x}+6 \mathrm{y}-4=2 \mathrm{t}\)
\(4 \mathrm{x}+6 \mathrm{y}-7=2 \mathrm{t}-3\)
\(\frac{d y}{d x}=\frac{-(2 x+3 y-2)}{4 x+6 y-7}\)
\(\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{-3 \mathrm{t}+4 \mathrm{t}-6}{2 \mathrm{t}-3}=\frac{\mathrm{t}-6}{2 \mathrm{t}-3}\)
\(\int \frac{2 \mathrm{t}-3}{\mathrm{t}-6} \mathrm{dt}=\int \mathrm{dx}\)
\(\int\left(\frac{2 t-12}{t-6}+\frac{9}{t-6}\right) \cdot d t=x\)
\(2 \mathrm{t}+9 \ln (\mathrm{t}-6)=\mathrm{x}+\mathrm{c}\)
\(2(2 x+3 y-2)+9 \ln (2 x+3 y-8)=x+c\)
\(\mathrm{x}=0, \mathrm{y}=3\)
\(\mathrm{c}=14\)
\(4 \mathrm{x}+6 \mathrm{y}-4+9 \ln (2 \mathrm{x}+3 \mathrm{y}-8)=\mathrm{x}+14\)
\(\mathrm{x}+2 \mathrm{y}+3 \ln (2 \mathrm{x}+3 \mathrm{y}-8)=6\)
\(\alpha=1, \beta=2, \gamma=8\)
\(\alpha+2 \beta+3 \gamma=1+4+24=29\)