Correct answer: 119

\(\mathrm{A=\int_{0}^{1}\left[\left(8-4 y^{2}\right)-\left(-2 y^{2}\right)\right] d y+\int_{1}^{3 / 2}\left[\left(8-4 y^{2}\right)-(2 y-4)\right] d y}\)
\(=\left[8 \mathrm{y}-\frac{2 \mathrm{y}^{3}}{3}\right]_{0}^{1}+\left[12 \mathrm{y}-\mathrm{y}^{2}-\frac{4 \mathrm{y}^{3}}{3}\right]_{1}^{3 / 2}=\frac{107}{12}=\frac{\mathrm{m}}{\mathrm{n}}\)
\(\therefore \mathrm{m}+\mathrm{n}=119\)