Correct option is (3) 46

\(3 x+4 y=12\)
\(3(\mathrm{r} \cos \theta)+4(\mathrm{r} \sin \theta)=12\)
\(\mathrm{r}(3 \cos \theta+4 \sin \theta)=12 \quad....(1)\)
\(3(-r \sin \theta)+4(\mathrm{r} \cos \theta)=12\)
\(\mathrm{r}(-3 \sin \theta+4 \cos \theta)=12 \quad ....(2)\)
\(\left(\frac{12}{\mathrm{r}}\right)^{2}+\left(\frac{12}{\mathrm{r}}\right)^{2}=(3 \cos \theta+4 \sin \theta)^{2}+(-3 \sin \theta+4 \cos \theta)^{2}\)
\(2\left(\frac{12}{\mathrm{r}}\right)^{2}=9+16\)
\(\frac{2 \times 144}{\mathrm{r}^{2}}=25 \Rightarrow 288=25 \mathrm{r}^{2}\)
\(\Rightarrow \frac{288}{25}=\mathrm{r}^{2}\)
\(\Rightarrow \sqrt{2}\left(\frac{12}{5}\right)=\mathrm{r}\)
\(l=\mathrm{OP}^{2}+\mathrm{PQ}^{2}+\mathrm{QO}^{2}\)
\(l=\mathrm{r}^{2}+\mathrm{r}^{2}+\mathrm{r}^{2}(\cos \theta+\sin \theta)^{2}+\mathrm{r}^{2}(\sin \theta+\cos \theta)^{2}\)
\(=2 \mathrm{r}^{2}+\mathrm{r}^{2}(1+\sin 2 \theta+1-2 \sin 2 \theta)\)
\(=2 \mathrm{r}^{2}+2 \mathrm{r}^{2}\)
\(=4 \mathrm{r}^{2}\)
\(=4\left(\frac{288}{25}\right)\)
\(=\frac{1152}{25}\)
\(=46.08\)
\([l]=46\)