Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
15.7k views
in Mathematics by (50.3k points)
closed by

Let two straight lines drawn from the origin O intersect the line \(3 x+4 y=12\) at the points P and Q such that \(\triangle \mathrm{OPQ}\) is an isosceles triangle and \(\angle \mathrm{POQ}=90^{\circ}\). If \(l=\mathrm{OP}^{2}+\mathrm{PQ}^{2}+\mathrm{QO}^{2}\), then the greatest integer less than or equal to \(l\) is :

(1) 44

(2) 48

(3) 46

(4) 42

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct option is (3) 46

Two straight lines drawn from the origin Session O intersect the line

\(3 x+4 y=12\)

\(3(\mathrm{r} \cos \theta)+4(\mathrm{r} \sin \theta)=12\)

\(\mathrm{r}(3 \cos \theta+4 \sin \theta)=12 \quad....(1)\)

\(3(-r \sin \theta)+4(\mathrm{r} \cos \theta)=12\)

\(\mathrm{r}(-3 \sin \theta+4 \cos \theta)=12 \quad ....(2)\)

\(\left(\frac{12}{\mathrm{r}}\right)^{2}+\left(\frac{12}{\mathrm{r}}\right)^{2}=(3 \cos \theta+4 \sin \theta)^{2}+(-3 \sin \theta+4 \cos \theta)^{2}\)

\(2\left(\frac{12}{\mathrm{r}}\right)^{2}=9+16\)

\(\frac{2 \times 144}{\mathrm{r}^{2}}=25 \Rightarrow 288=25 \mathrm{r}^{2}\)

\(\Rightarrow \frac{288}{25}=\mathrm{r}^{2}\)

\(\Rightarrow \sqrt{2}\left(\frac{12}{5}\right)=\mathrm{r}\)

\(l=\mathrm{OP}^{2}+\mathrm{PQ}^{2}+\mathrm{QO}^{2}\)

\(l=\mathrm{r}^{2}+\mathrm{r}^{2}+\mathrm{r}^{2}(\cos \theta+\sin \theta)^{2}+\mathrm{r}^{2}(\sin \theta+\cos \theta)^{2}\)

\(=2 \mathrm{r}^{2}+\mathrm{r}^{2}(1+\sin 2 \theta+1-2 \sin 2 \theta)\)

\(=2 \mathrm{r}^{2}+2 \mathrm{r}^{2}\)

\(=4 \mathrm{r}^{2}\)

\(=4\left(\frac{288}{25}\right)\)

\(=\frac{1152}{25}\)

\(=46.08\)

\([l]=46\)

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...