Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
8.3k views
in Mathematics by (50.3k points)
closed by

If \(y=y(x)\) is the solution of the differential equation \(\frac{d y}{d x}+2 y=\sin (2 x), y(0)=\frac{3}{4}\), then \(\mathrm{y}\left(\frac{\pi}{8}\right)\) is equal to :

(1) \(\mathrm{e}^{-\pi / 8}\)

(2) \(\mathrm{e}^{-\pi / 4}\)

(3) \(\mathrm{e}^{\pi / 4}\)

(4) \(\mathrm{e}^{\pi / 8}\)

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

Correct option is (2) \(\mathrm{e}^{-\pi / 4}\)

\(\frac{d y}{d x}+2 y=\sin 2 x, y(0)=\frac{3}{4}\)

I.F \(=\mathrm{e}^{\int 2 \mathrm{dx}}=\mathrm{e}^{2 \mathrm{x}}\)

\(y \cdot e^{2 x}=\int e^{2 x} \sin 2 x d x\)

\(y \cdot e^{2 x}=\frac{e^{2 x}(2 \sin 2 x-2 \cos 2 x)}{4+4}+C\)

\(\mathrm{x}=0, \mathrm{y}=\frac{3}{4} \Rightarrow \frac{3}{4} \cdot 1=\frac{1(0-2)}{8}+\mathrm{C}\)

\(\frac{3}{4}=-\frac{1}{4}+\mathrm{C}\)

\(1=\mathrm{C}\)

\(\mathrm{y}=\frac{2 \sin 2 \mathrm{x}-2 \cos 2 \mathrm{x}}{8}+1 . \mathrm{e}^{-2 \mathrm{x}}\)

\(\mathrm{x}=\frac{\pi}{8}, \mathrm{y}=\frac{1}{8}\left(2 \sin \frac{\pi}{4}-2 \cos \frac{\pi}{4}\right)+\mathrm{e}^{-2\left(\frac{\pi}{8}\right)}\)

\(y=0+e^{-\frac{\pi}{4}}\)

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...