Correct option is (3) 4
Doubtful points: \(-1,0,1, \sqrt{2}, \sqrt{3}, 2\)
at \(\mathrm{x}=\sqrt{2}, \sqrt{3}\)
\(\mathrm{f}(\mathrm{x})=(\underset{\substack{\;\;\;\downarrow \\ \;\;\;\text { Cont. }}}{\mathrm{2x^2 +x}}-[x])+\underset{\substack{\downarrow \\ \text { Cont. }}}{[x^2]}=\text{Discount}\)
at \(\mathrm{x}=-1\):
\(\left.\begin{array}{rl}\text {RHL } \Rightarrow \mathrm{f}(\mathrm{x})=(2-1-(-1))+0=2 \\ \mathrm{f}(-1)=2-1-(-1)+1=3\end{array}\right\} \text{Dis.}\)
at \(\mathrm{x}=2\):
\(\left.\begin{array}{rl}
\text {LHL } \Rightarrow & f(x)=8+2-1+3=12 \\
& f(2)=8+2-2+4=12
\end{array}\right\}\text{Cont.}\)
at \(\mathrm{x}=0\):
\(\left.\begin{array}{rl}
\text {LHL } \Rightarrow & 0+0-(-1)+0=1 \\
& f(0)=0
\end{array}\right\} \text { Dis. }\)
at \(\mathrm{x}=1\):
\(\left.\begin{array}{rl}
\mathrm{LHL} \Rightarrow & 2+1-0+0=3 \\
& \mathrm{f}(1)=3-1+1=3 \\
\mathrm{RHL} \Rightarrow & 2+1-1+1=3
\end{array}\right\} \text { Cont. }\)