(1) 20
\(S=\{1,2,3,4,5,6\} \quad R: S \rightarrow S\)
Number of elements in \(R=6\)
and for each \((a, b) \in R ;|a-b| \geq 2\)
\(X \rightarrow\) set of all relation \(R: S \rightarrow S\)
If \(a=1, b=3,4,5,6 \rightarrow(4)\)
\(a=2, b=4,5,6 \rightarrow (3)\)
\(a=3, b=1,5,6 \rightarrow(3)\)
\(a=4, b=1,2,6 \rightarrow (3)\)
\(a=5, b=1,2,3 \rightarrow (3)\)
\(a=6, b=1,2,3,4 \rightarrow (4) \)
Total number of ordered pairs \((a, b)\)
\(s.t. |a-b| \geq 2\)
\(=20\)
\(\therefore n(X)\) = number of elements in X \(= {}^{20}C_6\)
\(\therefore m=20\)
(2) 36
\(S=\{1,2,3,4,5,6\} \quad R: S \rightarrow S\)
Number of elements in \(R=6\)
and for each \((a, b) \in R ;|a-b| \geq 2\)
\(X \rightarrow\) set of all relation \(R: S \rightarrow S\)
If \(a=1, b=3,4,5,6 \rightarrow(4)\)
\(a=2, b=4,5,6 \rightarrow (3)\)
\(a=3, b=1,5,6 \rightarrow(3)\)
\(a=4, b=1,2,6 \rightarrow (3)\)
\(a=5, b=1,2,3 \rightarrow (3)\)
\(a=6, b=1,2,3,4 \rightarrow (4) \)
Total number of ordered pairs \((a, b)\)
\(s.t. |a-b| \geq 2\)
\(=20\)
\(\therefore n(X)\) = number of elements in X \(= {}^{20}C_6\)
\(\therefore m=20\)
\(Y=\) {\(R\in X\): The range of R has exactly one element}
From above, if range of R has exactly one element, then maximum number of elements in R will be 4.
\(\therefore n(Y) = 0\)
\(Z=\) {\(R\in X :R\) is a function from \(S\) to \(S\)}
\(n(Z) = {}^4 C_1 \times {}^3C_1 \times {}^3C_1 \times {}^3C_1 \times {}^3C_1 \times {}^4C_1\)
\(= (36)^2\)
\(n(y) + n(z) = 0 + (36)^2 = k^2\)
\(\Rightarrow |k| = 36\)