r = 0.4 mm = 0.4 x 10-3 m; h = ?; d = 103 kg/m3; g = 9.8 m/s2; T = 7 x 10-2 N/m
∵ \(T = \frac{rhdg}{2}\Rightarrow h = \frac{2T}{rdg}\)
\(\therefore\ h = \frac{2\times7\times10^{-2}}{0.4\times10^{-3}\times10^3\times9.8} = \frac{14\times10^{-2}}{0.4\times9.8}\)
= 3.57 x 10-2 m
h = 3.57 cm
If capillary tube is inclined to ß angle from vertical, then
l = \( \frac{h}{\cos\beta}\)
Here ß = 60° ∴ cos ß = cos 60° = \(\frac{1}{2}\)
∴ l = \(\frac{3.57}{1/2}\) = 2 x 3.57
or l = 7.14 cm